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Abstract: The capacity for subjective time in humans encompasses the perception of time’s unfolding
from moment to moment, as well as the ability to traverse larger temporal expanses of past- and
future-oriented thought via mental time travel. Disruption in time perception can result in mal-
adaptive outcomes—from the innocuous lapse in timing that leads to a burnt piece of toast, to the
grievous miscalculation that produces a traffic accident—while disruption to mental time travel
can impact core functions from planning appointments to making long-term decisions. Mounting
evidence suggests that disturbances to both time perception and mental time travel are prominent in
dementia syndromes. Given that such disruptions can have severe consequences for independent
functioning in everyday life, here we aim to provide a comprehensive exposition of subjective timing
dysfunction in dementia, with a view to informing the management of such disturbances. We
consider the neurocognitive mechanisms underpinning changes to both time perception and mental
time travel across different dementia disorders. Moreover, we explicate the functional implications of
altered subjective timing by reference to two key and representative adaptive capacities: prospective
memory and intertemporal decision-making. Overall, our review sheds light on the transdiagnostic
implications of subjective timing disturbances in dementia and highlights the high variability in
performance across clinical syndromes and functional domains.

Keywords: neurodegenerative disorders; Alzheimer’s disease; frontotemporal dementia; time per-
ception; mental time travel; prospective memory; delay discounting; intertemporal decision-making;
episodic memory

Despite being an intimate and fundamental feature of human psychology, the subjec-
tive experience of time remains poorly understood. Whether crossing the road, watching
the clock during a meeting, anticipating when to take medication, or planning an upcoming
appointment, everyday adaptive functioning relies on dependable cognitive mechanisms
for subjective timing. These mechanisms enable people not only to fine-tune everyday goal-
directed behaviour, but also to anticipate the best course of action over longer timescales;
to adjust, predict, and refine behaviours with the long-term future in mind [1–5]. In turn,
the subjective perception of time, along with the ability to navigate mentally through time
(re-experiencing past events and imagining possible future occurrences), gives rise to a
sense of self-continuity across past, present, and future contexts [6,7].

Subjective time is not a unitary construct. Instead, it draws upon a number of in-
teracting capacities including attention, working memory, and episodic memory [3,8,9].
Given this complexity, lapses in subjective timekeeping are commonplace, and reflect the
breakdown of different underlying components. This is observable across diverse neu-
ropsychiatric and clinical conditions ranging from schizophrenia [10,11] to post-traumatic
stress disorder [12]. In recent decades, mounting evidence has suggested that neurodegen-
erative disorders present with significant disruptions to both time perception and mental
time travel (see Glossary, Box 1). Given that these capacities are linked to adaptive everyday
functions—from driving to financial saving—understanding their vulnerability in neurode-
generative disorders is an essential goal for contemporary psychology, neuroscience, and
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neurology. The objectives of the current narrative review are to explore how subjective time
is compromised in dementia syndromes—focusing on Alzheimer’s disease (AD) and fron-
totemporal dementia (FTD)—and to elucidate the neurocognitive mechanisms potentially
driving such disturbances. We further consider the functional implications of altered sub-
jective timing by reference to two representative adaptive capacities—prospective memory
and intertemporal decision-making—along with key suggestions for future research.

Box 1. Glossary.

Cognitive offloading: the use of physical
action or external tools to alter the information
processing requirements of a task and reduce
internal cognitive demand.

Metacognition: cognition about cognition; the
capacity to monitor, evaluate, and control one’s
own cognitive processes.

Core network: a network of brain regions that
show increased activity both when people
remember past experiences and when they
imagine future experiences.

Prospective memory: the ability to remember
to carry out intentions in the future.

Delay discounting: the decline in the
subjective value of an outcome with the delay
to its receipt.

Retrospective time judgment: subjective
timing judgments made at the end of an
experiment without prior instructions to keep
track of time.

Duration discrimination: deciding whether a
comparison duration is shorter or longer than a
presented duration.

Time estimation: tasks requiring participants
to estimate how long stimuli were presented.

Episodic future thinking: the capacity to
imagine or simulate experiences that might
occur in one’s personal future.

Time perception: the ability to perceive, judge,
and represent time intervals.

Episodic memory: recollection of personally
experienced events situated within a unique
spatial and temporal context.

Time production: the requirement to produce
or generate experimenter-specified durations.

Intertemporal decision-making: making
decisions with consequences that play out only
over time, often involving trade-offs between
sooner and later costs and benefits.

Time reproduction: the ability to reproduce
specific durations presented by an
experimenter.

Mental time travel: the capacity to mentally
navigate through subjective time, including
episodic memory and episodic
foresight/future thinking.

1. Time Perception
1.1. The Foundations of Time Perception

Broadly defined, time perception refers to the capacity to perceive, judge, and represent
time intervals [9,11,13]—a ubiquitous occurrence in daily life. Consider the myriad timing
processes involved in cooking a meal—one may need to wait several seconds for butter to
melt, judge when several minutes have passed to remove a pot from the stove, or estimate
the total time required to finish the recipe. While external aids such as timers or alarms
can be used to support timing processes as a form of cognitive offloading [14], the tracking
of relatively short durations nevertheless draws upon core cognitive processes, including
attention and memory [15].

In the laboratory, time perception is typically studied using experimental tasks span-
ning short-term durations in the order of milliseconds, seconds, or minutes (reviewed
by [9]). These assessments include time estimation (estimating how a long stimulus was
presented for), time production (producing a specified duration), time reproduction (repro-
ducing the same duration as a presented stimulus), and duration discrimination (deciding
whether a comparison duration is shorter or longer than a standard duration) (Figure 1).
Additionally, time perception studies explore temporal relations between events [16], such
as temporal simultaneity (i.e., whether two events are in sync [17]), and temporal order (i.e.,
which of two events occurred first or second [18]). Collectively, the capacities assessed by
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these tasks enable people to accommodate changing representations of temporal context;
to form and update a dynamic structure of the external environment [19].
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Figure 1. Mechanisms of subjective time disruption in dementia span time perception and mental
time travel capacities. Many essential functional domains rely on both capacities, such as prospective
memory (remembering to perform an intention) and intertemporal choice (making decisions with
outcomes that play out over time). Public domain restaurant image from Openclipart.

1.2. Neural Substrates of Time Perception

On the neuroanatomical level, fMRI studies of time perception in healthy participants
point to the coordinated activity of multiple brain regions within a distributed cortico-
subcortical brain network [20–23], although there is some debate as to the modality-specific
versus domain-general nature of this activation [24]. Here, we summarise the main regions
consistently engaged across studies of subjective timing (Figure 2); for a recent review,
see [20]. The main frontal regions implicated include the superior, medial, and inferior
frontal gyri (including the dorsolateral prefrontal cortex and ventrolateral prefrontal cor-
tex) [25], along with the precentral gyrus and anterior cingulate gyrus. These regions play
an established role in cognitive control and sustained attention processes, necessary for
successful completion of timing tasks [26]. Activation in the supplementary motor area on
timing tasks has been associated with cognitive functions such as attentional allocation,
with the suggestion of a rostrocaudal gradient that might be sensitive to timing dura-
tion [27]. Meanwhile, the observation of insula activation, across timescales and timing
tasks (i.e., motor, perceptual), has been interpreted in favour of the direct encoding of
time intervals by the posterior insula [28], while anterior insular involvement has been
linked to salience detection and the integration of emotional and arousing representations
to construct a subjective awareness of time [29]. Regions such as the superior temporal
gyrus and the cerebellum have been implicated in modality-specific aspects of timing,
such as auditory [30] and motor preparation and prediction, respectively. Activation of
inferior parietal regions such as the precuneus and supramarginal gyrus may further re-
flect the role of attentional processes during timing [31]. Finally, subcortical structures
in the basal ganglia—including the caudate and putamen—are reliably engaged during
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time-perception tasks [32,33]. The caudate is known to be active in timing processes for
second-range intervals [9], either detecting deviant durations in patterns of stimuli [23]
or discriminating between two temporal stimuli [34]. In contrast, the putamen has been
shown to support the production of remembered durations, which might relate to working
memory or the precise timing of a motor plan [23]. The perception of time is evidently
supported by coordinated activity within a widely distributed cortico-subcortical network,
key nodes of which are vulnerable to injury or degeneration [35,36].
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Figure 2. Brain regions typically implicated in prospective time perception, as revealed by fMRI
studies in healthy young adults. dlPFC: dorsolateral prefrontal cortex; IFG: inferior frontal gyrus;
IPC: inferior parietal cortex; mPFC: medial prefrontal cortex; SMA: supplementary motor area; STG:
superior temporal gyrus. Brain template by BioRender.com (accessed on 22 March 2021).

2. Mental Time Travel
2.1. The Foundations of Mental Time Travel

Whereas time perception typically refers to the apprehension of short durations (i.e.,
sub-seconds, seconds), mental time travel refers to the ability to navigate mentally through
extended periods of subjective time [4,37]. This capacity enables one to revisit events from
the past, via autobiographical or episodic memory, or to project oneself into the future via
episodic foresight or future thinking [4,38,39]. These temporally extended voyages across
past and future contexts rely upon episodic and semantic representations that can be flexibly
recombined into novel configurations [3,40,41]. A defining feature of mental time travel is
the temporal information associated with the event representation, including information
about temporal distance, context, or order [42–44]. Temporal distance refers to the length of
time between the specific event and the present (e.g., “Christmas happened three months
ago”), while temporal context anchors events in the past, present, or future. Temporal
order refers to relations between events (e.g., one event happened before another event),
such as remembering that one became ill following a particular meal rather than the other
way around. Mental time travel enables us to navigate seamlessly back and forth through
subjective time, to reorient ourselves to the present moment, and to be aware of current
temporal dynamics. As will become apparent, mental time travel also underwrites a range
of important adaptive functions, including emotion regulation and spatial navigation [3],
anticipating and preparing for future threats [45–47], flexible decision-making [48], as well
as maintaining a continuity of selfhood across one’s subjective timeline [6,7].

2.2. Neural Substrates of Mental Time Travel

In terms of neural architecture, the capacity for mental time travel relies on the integrity
of a core network that overlaps closely with the default mode network of the brain [49].
Anchored on the medial temporal lobes—notably, the hippocampus—this core network
plays a pivotal role in the reconstruction of past events and the construction of future
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scenarios [50,51]. Hippocampal contributions to past and future thinking have primarily
been interpreted in relation to the extraction of episodic details from past experiences and
their flexible recombination into novel future events [52]. The hippocampus is also heavily
implicated in the construction of spatially coherent scenes or layouts, which provide the
spatial backdrop for past and future event constructions [50], yet has further been suggested
to represent temporal order information and to support the temporal organization of
memories [53,54]. However, the hippocampus does not work in isolation, and benefits from
close functional coupling with the ventromedial prefrontal cortex (vmPFC) [55]. While its
precise role in mental time travel remains unclear, vmPFC engagement has been proposed
to reflect the instantiation of appropriate schemas or knowledge structures [56], while other
studies suggest that the vmPFC supports the integration of social or affective content into
an event simulation [57,58]. More recently, it has been suggested that the vmPFC initiates
the construction of mental scenes by coordinating the assimilation of perceptual details
from neocortical sites [55]; however, activation of anterior midline regions might also reflect
self-referential processing across subjective time [59].

Rostrolateral prefrontal activation likely reflects the ongoing cognitive control pro-
cesses required to coordinate the online maintenance of temporally extended past and fu-
ture representations [60]. Interestingly, considerable posterior parietal cortical involvement
has been observed during past and future simulation [61–63], reflecting the importance of
a posterior parietal memory network comprising the posterior parahippocampus, retro-
splenial cortex, and posterior cingulate cortex [64], implicated in contextual association
processing [65] and coding for the presence of space [66]. Lateral parietal activation—
particularly in the angular gyrus—has recently been suggested to reflect the multimodal
integration of sensory–perceptual details into a contextually rich layer [67], which is then
overlaid onto the core memory supplied by the hippocampus [68]. Finally, lateral tem-
poral lobe involvement likely provides the requisite semantic knowledge to scaffold the
constructed event, into which episodic details can be assimilated [40,69]. From this brief
summary, the complexity of the neurocognitive architecture of mental time travel should
be evident. We consider next how this complexity renders subjective timing particularly
vulnerable in the context of neurodegenerative disorders.

3. Why Study Subjective Time in Neurodegenerative Disorders?

Neurodegenerative disorders are characterised by progressive impairments in cogni-
tion, behaviour, and/or motor function due to the degeneration of large-scale functional
brain networks [35,70]. This variable deterioration of distributed brain networks gives rise
to a constellation of higher order cognitive and behavioural changes, many of which bear
relevance to the domains of time perception and mental time travel [36,71]. To date, studies
exploring alterations in subjective time in neurodegenerative disorders have tended to
focus on Parkinson’s disease [72–74]. This is perhaps unsurprising when we consider that
the locus of pathology in Parkinson’s disease resides in the basal ganglia—one of the main
subcortical regions implicated in subjective timing in healthy adults [75]. However, much
is still not understood about time perception and mental time travel in neurodegenerative
disorders more broadly, especially in the context of dementia syndromes. Here, we consider
the conditions of Alzheimer’s disease (AD), characterised by marked episodic memory
dysfunction; behavioural-variant frontotemporal dementia (bvFTD), in which executive
dysfunction and behavioural changes predominate; and semantic dementia (SD), the hall-
mark feature of which is an amodal semantic impairment (see Figure 3). We will next argue
that subjective timing disturbances manifest variably across these clinical syndromes, and
may account for a range of behavioural and functional impairments exhibited by patients
in their daily lives.
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Clinical Reports of Subjective Timing Difficulties in Dementia 

Figure 3. Top panel displays canonical epicentres of atrophy in the clinical syndromes of interest. AD:
Alzheimer’s disease; bvFTD: behavioural-variant frontotemporal dementia; SD: semantic dementia;
ATL: anterior temporal lobe; mPFC: medial prefrontal cortex; MTL: medial temporal lobe; LPC:
lateral parietal cortex; PCC: posterior cingulate cortex. Brain template accessed on 22 March 2021,
from BioRender.com. Table provides an overview of characteristic clinical profiles in each dementia
syndrome. +: mild impairments; ++: moderate impairments; +++: severe impairments; ±: variable
performance depending on method of assessment; Intact: not significantly different to healthy older
control performance. a Function is intact when non-conceptually loaded test materials are used. b

Emerges with disease progression.

Clinical Reports of Subjective Timing Difficulties in Dementia

Clinical and anecdotal evidence indicates distinct changes in subjective timing in
Alzheimer’s disease (AD), in parallel with canonical episodic memory difficulties [71]. Pa-
tients typically present to the clinic displaying disorientation to time and place, manifesting
in a loss of awareness about the current date and time period [76]. While the fundamental
semantic knowledge of time appears relatively preserved in AD (e.g., how many minutes
are in an hour) [77], difficulties reading and comprehending time emerge with disease
progression [78]. Disruption to prospective and retrospective time perception has been
suggested to deleteriously impact the capacity for past and future mental time travel in
AD [79]—a topic to which we return in more detail later.

Although time perception represents a nascent topic in frontotemporal dementia,
we argue that there is sufficient clinical and anecdotal evidence to warrant consideration
of subjective timing disturbances in these syndromes. Patients with the behavioural
variant of frontotemporal dementia (bvFTD)—a younger onset neurodegenerative disorder
characterised by personality and behavioural changes—generally remain oriented to time
and place [80]. Interestingly, however, patients with bvFTD display increased temporal
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rigidity in their everyday behaviours—for example, insisting on performing household
tasks in exactly the same order each time [81]. More striking is the recent finding of extreme
environmental dependency in bvFTD, whereby patients appear unable to perceptually
decouple from the current moment in order to engage in endogenously driven past or
future forms of spontaneous cognition [82]. This inability to revisit events from the past
or to envisage the future results in the individual becoming increasingly tethered to the
present moment in time, and may underlie a range of behavioural disturbances that typify
this syndrome [7,83].

Finally, semantic dementia (SD) provides a rare opportunity to explore how the
progressive deterioration of the conceptual knowledge base impacts the fundamental
understanding of the construct of time and the capacity to mentally navigate across past and
future temporal contexts [84]. Clinical observations indicate that while SD patients remain
well oriented to time and place [85], patients become increasingly bound by routines—for
example, insisting on doing things at a particular time, or displaying discomfort when time
schedules are disturbed [81]. A proclivity for clock watching is also observed [86], with
recent evidence suggesting a preoccupation with time in some SD cases [87].

Elucidating the precise clinical manifestations of these disturbances represents an
important pursuit, enabling us to shed light not only on the fundamental mechanisms of
subjective timing, but to also pave the way towards the development of practical guidelines
to manage the everyday consequences of these symptoms.

4. Time Perception in Dementia
4.1. Prospective Timing in Alzheimer’s Disease

Experimental investigations of time perception in dementia typically employ measures
of prospective timing, including time estimation, time production, time reproduction, and
duration discrimination (see Box 1). Across such tasks, AD patients commonly show
impaired accuracy, higher error rates, and increased performance variability, with the
suggestion that such impairments are more pronounced in estimation and reproduction
tasks [88–90]. In an early study, Nichelli et al. explored the accuracy and precision of
time perception in a sample of mild-to-moderate AD patients. Using a verbal estimation
procedure, participants were asked to read 5, 10, 20, or 40 digits, one at a time, while
concurrently reproducing a standard interval of one key press per second [89]. Following
each sequence, participants then estimated the length of time elapsed from the start of the
trial. Relative to healthy older controls, AD patients showed poorer accuracy and precision
in the time estimation task, with variable performance on the time reproduction condition.
This profile of increased variability and decreased accuracy in AD has since been replicated
using various time perception measures. For example, Carrasco et al. employed a time
production task whereby participants were required to produce three distinct time intervals
(5 s, 10 s, and 25 s) using the space bar to denote the beginning and end of each estimated
interval. Relative to healthy older adults, patients with AD displayed reduced accuracy
across all time intervals [91]. Similarly, a later study using a verbal time estimation task
reported more absolute errors and greater performance variability in AD patients relative
to older adults [90]. More recently, El Haj et al. [79] instructed patients with AD to read
a series of numbers for varying durations of time (30 s, 60 s, 90 s, and 120 s) and then to
estimate the duration spent reading. Irrespective of duration, AD patients were found to
underestimate time durations compared to both younger and older adults.

The origins of variable performance on timing tasks in AD have been further explored
using manipulations of time duration and task complexity. Using time bisection tasks,
Caselli et al. [92] required mild AD patients to adjudicate on whether different time du-
rations (sub-second range: 100–600 ms; supra-second range: 1000–3000 ms) were shorter
or longer relative to a reference interval. While longer time bisection capacity was not
found to differ between AD and younger or older control groups, AD patients displayed
increased variability in the timing of millisecond durations [92]. Papagno et al. instructed
participants to give verbal estimations of time durations (15 s, 50 s) while completing
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various concurrent tasks of attention and short-term memory [93]. AD patients consistently
overestimated time intervals, irrespective of duration, relative to age-matched healthy
controls, which in turn was attributed to the role of executive and attentional factors [93].
El Haj et al. considered the role of task complexity by requiring participants to perform
time reproduction tasks during high and low attention-demanding conditions [88]. Over-
all, timing performance decreased as task complexity increased, whereby AD patients
under-reproduced the time duration on the high- relative to the low-attentional conditions.

The evidence to date suggests a profile of increased variability and decreased accuracy,
in the context of marked heterogeneity in AD on prospective time-perception tasks, with
some patients overestimating and others underestimating time intervals. How such profiles
relate to disease staging and level of cognitive impairment remains unclear; however, it is
likely that episodic memory and attentional difficulties play prominent roles [71].

4.2. Retrospective Timing in Alzheimer’s Disease

While the bulk of experimental studies have focused on prospective timing capacities
in AD, there is some evidence to suggest that retrospective judgments may also be com-
promised. Retrospective time judgments require participants to provide an estimate of
the time elapsed (usually in tens of minutes), typically at the conclusion of an experiment
and without any prior warning to keep track of time. An interesting study in this regard
was conducted by Heinik, who explored the capacity for retrospective timing in 16 AD
and 11 vascular dementia patients [94]. Participants completed a series of multiple cogni-
tive assessments, which lasted for a total duration of 67 minutes, and were subsequently
asked to retrospectively estimate the duration of the test session. Interestingly, patients
with dementia were not found to differ from healthy older participants, suggesting that
retrospective time judgements may be relatively preserved, at least in the early stages of
the AD disease course [94].

From these studies, we can surmise that prospective and retrospective timing capac-
ities are not uniformly impaired in AD—a proposal that is borne out in a recent meta-
analysis of timing disturbances in mild cognitive impairment (MCI) and AD [95]. Although
multiple findings suggest aberrant time perception in AD, a direct comparison across differ-
ent methodologies is lacking, as is a systematic examination of how subtle changes in task
design impact timing performance in dementia [9]. In terms of underlying mechanisms,
while some studies have proposed a role for an internal clock change, working memory,
or attentional factors [71,92,93], formal testing of these mechanisms has failed to establish
reliable contributors [90]. In the same vein, the neural substrates of disrupted timing in AD
remain to be established. Future work pairing structural and functional neuroimaging ap-
proaches will be necessary to delineate the neurocircuitry of time perception impairments
across the disease trajectory in AD.

4.3. Prospective Timing in Frontotemporal Dementia

While a large body of evidence indicates prominent alterations in time perception
in AD, studies in frontotemporal dementia (FTD) are comparatively sparse. This gap in
knowledge is somewhat surprising given reports of temporal rigidity and adherence to
routines in these syndromes [86,87]. In a single case study, Wiener and Coslett explored
time perception performance in a patient with probable FTD—most likely the behavioural
variant of FTD (bvFTD)—to test the claim that the frontal lobes are crucial for subjective
timing [96]. A battery of timing tasks was administered covering duration estimation, time
production, and reproduction abilities across supra-second intervals (2–12 s), temporal
discrimination of sub- (300–600 ms) and supra-second (2–8 s) intervals, along with a
finger-tapping task, while line length estimation, production, and reproduction tasks
served as non-temporal control tasks. Relative to an age-matched control group, the FTD
patient displayed poorer accuracy on time estimation and production tasks, resulting in
under-production and rather extreme over-estimation of time intervals. Normal accuracy
was observed for time reproduction in the context of heightened performance variability,
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while duration discrimination and finger-tapping performance did not differ from control
participants. Importantly, the FTD patient displayed preserved judgment on the non-
temporal tasks, suggesting a specific impairment in discrete aspects of prospective timing.
The authors proposed that such alterations in timing might reflect a faster internal clock
mechanism, while working memory difficulties might further impede task performance,
although these proposals were not formally tested.

Building on the initial clues provided by the case study by Wiener and Coslett, a more
recent group study provided further definitive evidence of timing disruption in bvFTD,
as well as possible underlying mechanisms [97]. Henley et al. administered a battery of
timing tasks to a group of dementia patients comprising 20 bvFTD, 11 semantic dementia
(SD), 4 progressive non-fluent aphasia (PNFA), and 8 AD patients [97]. Motor timing was
measured using a finger-tapping task under externally paced and self-paced conditions.
During the externally paced condition, participants were required to make 50 key taps on
beat with audio tones presented at a fixed interval of one tone every 1500 ms. By contrast,
the self-paced condition more closely reflected a time reproduction task, whereby a short
succession of tones was presented at a fixed interval of 1500 ms and then ceased, following
which participants were required to tap the key, self-paced, for 50 additional key taps to the
same beat. Relative to a control group, bvFTD patients displayed heightened variability in
both the self-paced and externally paced tapping conditions, and were more likely to “drift”
steadily away from the proper pace, becoming progressively faster or slower. Notably,
self-paced performance decrements were associated with working memory capacity, while
externally paced performance impairments were found to correlate with executive function.
Collectively, these results offer important insights into the mechanisms by which bvFTD
patients might experience time disruption.

Despite evidence for an increased interest in time and a propensity for clockwatching,
little research has explored prospective or retrospective timing in SD. To our knowledge,
the report by Henley et al. [97] remains the only study in which time perception has been
formally assessed in this syndrome. Interestingly, no significant differences were exhibited
by SD patients relative to controls across any of the measures of time perception, in either
the self-paced or externally paced conditions [97]. We tentatively interpret these findings as
supportive of a general preservation of timing in SD, at least over short temporal durations.
This proposal is corroborated by the intriguing observation of relatively intact time-based
prospective memory in SD [98]—a finding we will consider in more detail below. The topic
of time perception in SD currently remains ripe for exploration, particularly with a view to
identifying the mechanisms that support this relatively intact capacity.

5. Disrupted Capacity for Mental Time Travel in Dementia
5.1. Revisiting the Past

The capacity to mentally travel back in subjective time to revisit defining events
from one’s past is often considered a prototypical expression of the self, and one that is
particularly vulnerable to disruption in dementia [7,99]. Autobiographical memory (ABM)
enables us to recollect personally relevant memories situated at unique moments in time
that are replete with sensory–perceptual details and emotional connotations, conferring a
sense of autonoetic (self-knowing) reliving [100,101]. Disruption to ABM in dementia not
only impacts an individual’s sense of self, but has been shown to also impact negatively on
the patient–carer relationship [102].

Early studies of ABM dysfunction in AD demonstrated a temporally graded pattern
of retrieval in accordance with Ribot’s Law [103], with impoverished recent recall in
the context of relatively spared remote memory [104–108]. However, with the advent
of assessment tools using uncapped scoring methods [109], reports of flat profiles of
retrieval in AD emerged, with recent and remote memories comparably affected [110–113].
Interestingly, discrete islands of preservation persist in the face of the AD pathological
process—most notably older, more temporally distant memories that are likely to be
semanticised and to carry self-defining personal semantic information [7]. Importantly,
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the phenomenological experience of mental time travel to the past is also compromised in
AD, with patients reporting distinct alterations in the vividness, self-referential quality, and
emotional re-experiencing of formerly evocative events [107,114]. Patients gradually lose
the capacity to mentally relive their past experiences, but instead report simply “knowing”
that these events have taken place [107,108,115]. Closer inspection of the ABM narrative
in AD further reveals a definitive shift in tense production, with patients defaulting to a
present- rather than past-oriented narrative style [116]. As such, not only is the capacity for
mental time travel to the past compromised in AD, but so too is the mode by which AD
participants engage in and narrate their past events.

There is now sufficient evidence to conclude that mental time travel to the past is also
grossly compromised in bvFTD. While episodic memory impairments are not typically
considered a core diagnostic feature of bvFTD [117], studies of ABM consistently reveal
marked alterations in this capacity. Importantly, these ABM impairments in bvFTD span all
time periods, culminating in a flat retrieval profile [108,111–113,118–120]. The recollective
experience is also compromised, with bvFTD patients demonstrating significantly reduced
autonoetic reliving of the past [108]. This global impairment in retrieving specific events
from the past is further compounded by an inability to generate rich contextual details
during event elaboration. Notably, this paucity of detail encompasses spatial and temporal
information for recent events, such that while patients remain well oriented to time and
place in general, they seem unable to access the relevant spatiotemporal details from
memory when describing past experiences [112].

Finally, patients with SD show an intriguing profile of loss and sparing for ABM retrieval,
departing dramatically from the negative temporal gradient of AD and the flat gradient ob-
served in bvFTD. Early studies of ABM retrieval in SD indicated a reverse temporal gradient
or, more accurately, a step function, whereby recent episodic experiences remain remarkably
preserved relative to events from the distant past [108,121–123]. This finding has been replicated
more recently using ecologically valid tasks that seek to preserve the essential qualities of
episodic memory (i.e., the what, where, and when), [124] as well as more elaborate assessments
of contextually rich ABM retrieval [112,125]. The consistent finding to emerge across these
studies is of a relative preservation of recent experiences, in contrast with a marked impairment
in the retrieval of remote memories [40,126]. This detailed recollection of recent experiences is ac-
companied by a preserved sense of mental reliving [108], suggesting a preferential encoding and
re-experiencing of past events provided they are temporally close to the present day. The tempo-
ral boundaries that distinguish recent from remote experiences remain a source of debate [127],
and the process by which older memories become semanticised over time remains unclear.
What is becoming apparent, however, is that the truncation of the temporal window to that of
recently experienced events in SD has important functional implications. Strikwerda-Brown
et al. propose that many of the seemingly inflexible and stereotypical behavioural changes
observed in SD might reflect the anchoring of the self to recently experienced events [7]. As
the self becomes progressively more situated within the present tense [116], patients with SD
might increasingly rely on recent experiences to guide their behaviour, manifesting in a strong
preference for routine.

5.2. Imagining the Future

While a large corpus of research demonstrates significant impairments in mental time
travel to the past in dementia, our mental timelines also extend to the future, and this is likewise
vulnerable to impairment (Figure 4). From an evolutionary perspective, the broad capacity to
anticipate events that might occur in the future—so-called “prospection”—confers immense
adaptive value and flexibility across a diverse range of functions [1,128–131]. Although a
relatively newborn field, there is now sufficient evidence to conclude that the ability to mentally
travel forwards in subjective time to envisage the future is deleteriously affected in dementia [84].
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Figure 4. Bending time’s arrow—mental time travel allows us to revisit past experiences and to
envisage possible future events, and is markedly compromised in dementia. Schematic showing how
temporal distance from the current moment influences past retrieval and future thinking in healthy
young adults. Images sourced from Pixabay.com (accessed on 22 March 2021). The accompanying
table summarises the existing literature on mental time travel disturbances in dementia. Notes. ++:
moderate impairments; +++: severe impairments; ±: variable performance depending on method of
assessment; Intact: not significantly different to healthy older control performance; ?: no empirical
data available to date.

Studies of future thinking in AD demonstrate a parallel impairment in the construction
of contextually rich events across past and future contexts [132–135]. These symmetries
across temporal conditions have been interpreted as reflecting a compromised capacity to
extract sensory–perceptual details from past experiences, and to flexibly recombine these
details into novel future scenarios [132]. Interestingly, the phenomenological experience
is also affected, with patients rating their past and future events comparably in terms
of emotional intensity and personal significance [132,136]. As the majority of studies to
date have focused on the simulation of future events occurring 1 year into the future, it
remains unclear whether increasing temporal distance from the present disproportionately
impacts future thinking in AD. Studies exploring the capacity for semantic prospection (i.e.,
envisaging non-personal scenarios occurring 10 years into the future) hint at the possibility
of a global disruption to any form of future simulation, irrespective of content and temporal
distance [84,137].

Comparatively less is known regarding the ability to envisage future events in bvFTD,
as to the best of our knowledge only two studies have explored this topic to date. Irish et al.
investigated past and future thinking in bvFTD and revealed symmetrical deficits in the
construction of episodic events across both temporal contexts, mirroring performance in
an AD group [135]. Interestingly, future thinking impairments in bvFTD were found to
relate to frontopolar brain atrophy, converging with a large body of work implicating the
frontal poles in prospective memory, goal-directed behaviour, counterfactual thinking, and
planning [138]. In a subsequent study, the capacity to envisage non-personal information
in the distant future was probed, again revealing parallel deficits across past and future
contexts in bvFTD [137]. Collectively, these findings point to gross disturbances in temporal
processing that extend from the past to the future. As we will discuss shortly, the interplay
between prospection difficulties and functional outcomes in bvFTD represents an important
area for empirical investigation, given that many of the canonical features of this syndrome
would seem to indicate a lack of regard for the future consequences of actions [1].

Pixabay.com
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Finally, studies of future thinking converge to reveal an asymmetric impairment of
future relative to past forms of thinking in SD [139,140]. Despite a relative preservation of
recent episodic retrieval, patients with SD display marked difficulties in envisaging and
describing events located in the near future in rich contextual detail [136,141,142]. This
future-oriented impairment spans multiple representational formats, including represen-
tation of oneself [141], construction of detailed self-referential future scenarios [142], and
simulation of non-personal public events that might occur in the far future [142]. These
pervasive impairments in future-oriented thinking have been interpreted in relation to the
profound pan-modal loss of conceptual knowledge that typifies this syndrome [84,139].
In the absence of the appropriate semantic scaffold, patients with SD lack the conceptual
framework upon which to construct their future events [140]. Relatedly, provision of an
appropriate scaffold can support the capacity for prospection in SD, as demonstrated by a
recent fMRI study in which patients with SD could envisage future events within the next
12 months that had been pre-selected by family members [143]. This finding resonates with
reports of relatively intact atemporal forms of imagination in response to commonplace
predetermined cues in left-lateralised cases of SD [144], suggesting that the de novo con-
struction of events located in the future may be particularly vulnerable in SD as opposed
to imagination writ large.

Whether temporal distance plays a modulating role in this context remains unclear,
though a recent case study of a patient with SD sheds some light on this question. Patient
SL was asked to remember events in the near (last week), intermediate (1 year ago), and
remote (5 years ago) past, and to envisage future events in the corresponding time periods,
i.e., near future (next week), intermediate future (1 year’s time), and distant future (5
years’ time). Relative to controls, SL had the greatest difficulty with the most temporally
distant past and future conditions, while past and future thinking for near and intermediate
temporal contexts remained relatively intact [145]. While group studies will be necessary
to confirm this finding, it nevertheless provides important insights regarding the effects
of temporal distance on mental time travel capacities in SD and speaks to the increasing
role of semantic memory in modulating past and future thinking as we move further away
from the present moment in time [40,127].

6. Functional Relevance of Subjective Time Disturbances in Dementia

Studies on subjective time in dementia syndromes remain relatively sparse and are
constrained by the laboratory setting. Deficits in time perception and mental time travel,
however, are predicted to have substantial real-world implications given the ubiquity of
timing-related activities in everyday life. Investigating the functional relevance of subjec-
tive timing disturbances in dementia is therefore paramount. We explore this functional
relevance with reference to two key representative adaptive capacities that are vulnerable to
disruptions in time perception, mental time travel, or both: intertemporal decision-making
and prospective memory.

6.1. Disruptions in Intertemporal Choice

Intertemporal choices are those with consequences that play out over time, involving
trade-offs between sooner and later outcomes [146,147]. One well-established phenomenon
in intertemporal decision-making is that the subjective value of a delayed outcome tends to
become discounted with increasing delays to its occurrence. This tendency for delay discounting
is near-universal in adults [148], present in non-human animals [149], and emerges early in
childhood [150]. Steeper delay discounting (wherein rewards more quickly lose their subjective
value with delays to their receipt) has become a prominent target for applied research, not least
because of its occurrence in a range of psychopathologies [151] and associations with outcomes
ranging from financial debt [152] to life expectancy [153,154]. Various lines of evidence have
implicated subjective timing in the steepness of delay discounting [155,156], with some promi-
nent models placing the subjective perception of time centre-stage as both a key neurocognitive
mechanism and an essential individual-differences variable [156,157]. According to such mod-
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els, an individual who relatively overestimates the duration of delays would perceive future
rewards as being relatively more distant, and they should therefore perceive the cost of waiting
to be higher. Numerous studies indeed find that individuals who perceive the duration of
delays to be longer also tend to more steeply discount delayed rewards [157–159], consistent
with emerging views of delay discounting as the product of subjective, rather than objective,
time delays [157,159–162].

As we saw earlier in the context of increased timing variability, there is evidence for
duration overestimation in cases of both AD and bvFTD (where in at least one study the
overestimation was extreme) [96]. For these patients, delays to future rewards may be perceived
as being relatively more substantial, making waiting for future rewards less appealing. In line
with this notion, a body of empirical research suggests distinct shifts towards steeper delay
discounting in neurodegenerative conditions. Across AD and the prodromal stage of MCI, there
is evidence for a modest elevation in delay discounting, leading to a greater prioritization of
immediate rewards relative to delayed ones e.g., [163–167], although mixed findings exist in the
literature (e.g., [168–173]). In bvFTD, the evidence is sparser but more consistent, with patients
demonstrating substantially steeper delay discounting relative to healthy controls, and in some
cases relative to AD [168,174,175] (though see [170,173]).

In a standard intertemporal choice task, participants make various decisions between
smaller amounts of reward available sooner, and larger amounts of reward available
later. Usually, these rewards are monetary, although some researchers have also taken
steps to develop ecologically valid tasks that involve trading off various goods, such
as a choice between a packet of chips now versus a cooked meal in a restaurant in 1
month [169]. When using an ecological intertemporal choice task adapted for dementia,
Bertoux et al. [176] found a consistent preference for smaller rewards across every timespan
(1 month to 10 years) in patients with bvFTD. Such steeper delay discounting may manifest
in the everyday life of bvFTD patients as the consumption of unhealthy but immediately
rewarding foods, or a lack of other health-protective behaviours that incur an immediate
cost but downstream benefit [176]. These findings resonate with patterns of behaviour
common in bvFTD, such as dietary shifts in favour of calorie-dense or high-fat foods [177].
Time perception changes may also account for more subtle shifts in intertemporal decision-
making in patient groups. For example, the greater variability in time perception described
earlier across dementia syndromes could be associated not necessarily with steeper delay
discounting, but with reduced sensitivity to delay information in making intertemporal
decisions—a phenomenon observed recently in both AD and bvFTD [168]. Similarly,
the noise introduced by variability in subjective time representations could manifest in
greater internal uncertainty around estimates of prospective value [178], and therefore less
consistency in intertemporal choices (see [179]). Alterations in value-directed learning in
bvFTD might further influence responses to intertemporal choice tasks by compromising
the capacity to selectively prioritise high-value options [180].

It is an open question how subjective timing mechanisms in the seconds to minutes
range relate to those involved over the longer timespans of days or months more common in
intertemporal choice tasks. Systems-level accounts of intertemporal decision-making routinely
include the core network described earlier, on account of the putative role of mental time travel in
managing these longer-term decisions [148,181,182]. In parallel, various models in psychology,
economics, and computational neuroscience ascribe a central role to mental time travel as
a mechanism for flexibly modifying present choices in line with estimates of the likelihood
and value of future outcomes [183–188]. Recent research in MCI and AD demonstrates that
graded disruptions to both episodic memory and episodic future thinking are associated with
steeper delay discounting in these patients [166,167]. In healthy younger adults, promising
intervention studies show that cuing participants to imagine future outcomes while making
intertemporal choices can reduce delay discounting, both for money as well as for other
commodities, such as food, cigarettes, or alcohol [176,189–191]. However, older adults [192]
and individuals with subjective cognitive decline [193] who exhibit deficits in future imagining
show less susceptibility to this episodic future cueing effect. Likewise, individuals with damage
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to the hippocampus and associated mental time travel deficits through brain injury are not as
susceptible to such episodic future cueing effects as healthy controls [194,195], even if they do
discount delayed rewards within the normal range [196,197]. The use of personalized, real-life
cues may overcome this deficit, allowing individuals with impairments to mental time travel to
modify their discounting in response to future event cuing [198,199]. While there is evidence to
suggest that neurodegenerative disorders are associated with reduced flexibility in response to
related imagery-based cueing protocols [175], it remains to be seen whether alterations to the
future event cuing procedure to make it more self-relevant, personalized, and congruent with
planned activities will enable reductions to delay discounting in dementia (see [174]).

6.2. Prospective Memory Impairments

Prospective memory refers to the process of forming an intention and remembering
to carry out that intention in the future [200,201]. Successful prospective memory perfor-
mance calls upon various cognitive capacities involved in multiple stages, from forming
and retaining an intention to subsequently initiating and executing that intention at the
right moment [202,203]. Event-based prospective memory concerns the initiation and
execution of an intention in response to a particular target event, such as remembering to
buy bread when driving past the bakery on the way home from work, while time-based
prospective memory concerns the initiation and execution of an intention at a particular
time (e.g., leaving the house at 1:30 p.m. for a 2 p.m. appointment) or after a particular
amount of time has passed (e.g., remembering to take one’s medicine 30 min after one’s
morning meal). Various studies have begun to investigate the contribution of time per-
ception abilities to prospective memory performance, in line with theoretical views that
emphasize shared cognitive and neural substrates between these abilities [204]. While
some studies implicate time perception accuracy in prospective memory performance [205],
other research has failed to find associations between time perception and raw prospective
memory performance accuracy per se, instead revealing that time perception abilities
relate to the tendency towards time monitoring via checking external aids, such as stop-
watches and clocks, as a compensatory strategy to overcome internal deficits to prospective
memory [206,207].

Time-based prospective memory lapses are now well established in AD, with dis-
ruptions evident across the various stages required for prospective memory success (for
a meta-analytical review, see [208]). Such lapses bear obvious relevance to instrumental
activities of daily living in dementia and represent an important area of research given their
widespread functional implications, for instance in medication adherence or keeping medi-
cal appointments [209,210]. AD patients display an impaired capacity to execute intentions
during prospective memory tasks, such as an instruction to tell an administering clinician
that it is time for a break after 15 minutes have passed. This deficit is compounded by an
inability to remember the appropriate action, particularly when this must be spontaneously
retrieved [202,211]. Task-based prospective memory difficulties are corroborated by carer
reports, whereby AD patients display a range of prospective memory disturbances in their
daily lives, such as deciding to do something in a few minutes’ time and then forgetting
to do it [212]. These difficulties have been found to relate to cognitive mechanisms such
as episodic memory integrity and grey matter intensity decrease in prefrontal, medial
temporal, and posterior parietal regions [212,213]. Many of the regions implicated in
time-based prospective memory overlap with those known to support episodic past and
future mental time travel [202], raising the possibility that these functions might decline in
parallel in AD (see [132]). A number of recent studies have also begun to illustrate a specific
role for episodic simulation in selectively boosting prospective memory performance in
both health and disease [214–221], while related research demonstrates that elaborative
encoding via implementation intention framing holds promise for enhancing prospective
memory performance in dementia [222].

Time-based prospective memory is, unsurprisingly, also compromised in bvFTD,
resonating with a large body of literature pointing to the importance of the frontal lobes
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for prospective memory performance across various stages, including maintaining and
retrieving intentions at the right moment (e.g., [223]). Only a handful of studies have
formally investigated time-based prospective memory in bvFTD, and these have demon-
strated performance deficits of a similar magnitude as observed in disease-matched cases
of AD [98]. Interestingly, these impairments were strongly correlated with delayed episodic
memory dysfunction in both bvFTD and AD [98,213]. On the neural level, time-based
prospective memory impairments in both patient groups reflect prefrontal and medial
temporal lobe atrophy [213], reinforcing the central role of the episodic memory system in
the origin of prospective memory disturbances in dementia [84].

Prefrontal brain regions appear to be much more heavily implicated in prospective
memory disturbances in everyday life in bvFTD. A recent study demonstrated that a
primarily prefrontal cortical circuit comprising orbitofrontal, medial prefrontal, dorsolateral
prefrontal, and anterior cingulate cortices correlates with carer-rated lapses in prospective
memory function in bvFTD [212]. The orbitofrontal cortex emerged as a shared neural
correlate across retrospective and prospective memory disturbances in both AD and bvFTD
patients, underscoring the importance of this region in the strategic control of memory [212].
Furthermore, under experimental conditions of minimal cognitive demand specifically
designed to elicit mind wandering, patients with bvFTD exhibited a tendency towards
stimulus-bound cognition, indicative of an increased reliance on external sensory input,
akin to what is observed in “environmental dependency syndrome” [82]. This raises the
possibility that an inability to decouple from the immediate perceptual surroundings of the
patient might compound the difficulties of retrieving intentions when required, resulting
in prospective memory failures [1].

The finding of marked impairments in the capacity to carry out intentions at a fu-
ture point in time in dementia populations is admittedly unsurprising when we consider
the vast array of cognitive and neural changes that typify these syndromes, along with
the wide range of cognitive capacities called upon in prospective memory. An unex-
pected and intriguing finding in this context is that of relatively preserved time-based
prospective memory in semantic dementia, as has been documented by two independent
studies [98,145]. Kamminga et al. administered a shortened version of the Cambridge
Behavioural Prospective Memory Test to eight patients with semantic dementia [98]. Partic-
ipants completed three time-based and three event-based prospective memory tasks while
completing simple ongoing filler tasks. Importantly, participants were instructed that they
could use whatever tools were available in the room to help them to complete the task,
including making written notes of the test instructions using the pen and paper provided,
or referring to a large analogue clock that was displayed prominently on the screen of the
laptop during testing. The SD patients exhibited preserved time-based prospective memory
but impaired event-based prospective memory relative to controls [98]. More recently, La
Corte et al. replicated this finding of relatively intact time-based prospective memory in a
single case of SD, alongside relatively intact near-future prospection capacity [145]. This
raises the question of how patients with marked cortical atrophy and profound cognitive
disturbances can successfully perform time-based prospective memory tasks, and whether
a compensatory mechanism might be at play (see also [224]).

In time-based prospective memory tasks, a clock is often displayed to facilitate ongoing
monitoring processes. Indeed, in the Kamminga et al. study [98], an analogue clock was
kept visible throughout the test session, enabling participants to refer to and keep track of
time. This availability of external cues to overcome internal difficulties with timing raises a
further interesting point regarding the use of compensatory strategies as a form of cognitive
offloading. SD patients have been shown to display an increased preoccupation with time,
a tendency to “watch the clock”, and an insistence on doing things at a particular time [87].
Clockwatching may in this case prove advantageous to the execution of time-based tasks,
but detrimental to event-based tasks, and may, in part, explain the differential profiles
of prospective memory performance in SD. However, if the capacity to flexibly use such
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external cues is disrupted, we would predict an impaired ability to turn to external aids
such as clocks to augment task performance.

Recent research on the psychological mechanisms of cognitive offloading has revealed that
the flexible use of external memory aids depends on reliable metacognitive
insight [14,225–228]. To strategically adopt a clock-watching strategy requires a degree of
awareness about the inaccuracy of one’s internal time perception, and a level of awareness that
clock monitoring will be required to successfully fulfil one’s intention. One prediction from this
view is that, in dementia syndromes, a relative sparing of insight may be associated with clock
monitoring that tracks alongside declines in time perception accuracy. Meanwhile, disruptions
to metacognitive insight associated with prefrontal atrophy—as in bvFTD—might break the link
between time perception difficulties and a strategic reliance on external aids. Declines in cognitive
flexibility may also play a part, considering that prospective memory tasks require participants
to complete ongoing filler tasks. Patients with bvFTD may be less adept at flexibly switching
between the competing demands of the filler tasks, clock watching, and implementation of the
prospective memory tasks, resulting in difficulties in strategically relying on external aids when
most needed. Collectively, these avenues represent important areas for future investigation
to arrive at a comprehensive understanding of the various mechanisms driving prospective
memory impairments in dementia.

7. Improving Measurement and Assessment

Given the functional significance of subjective timing disturbances in everyday life, it
is imperative that the field move towards objective measurement and improved clinical
assessment of these constructs [229]. Despite a proliferation of time-perception tasks in the
literature, it remains unclear how task design influences performance, or how subjective
timing complaints in dementia can be quantified in an objective manner. Reconciling
the precise relationship between behavioural performance in time-perception tasks and
patient- or carer-reported clinical symptoms—such as disorientation—further represents
an important avenue for research. A similar argument can be made in relation to the
assessment of mental time travel, as existing techniques are inherently difficult to val-
idate [230]. An important goal will be to develop measures of mental time travel that
are both psychometrically sound and clinically useful, potentially enhancing the capacity
to screen for early cognitive changes in dementia (e.g., [231]). One promising avenue is
the use of refined coding protocols for narrative scoring that index the intersection of
episodic and semantic elements during mental time travel [69,232]. Finally, for both time
perception and mental time travel, we note that existing measurement and assessment tools
are overwhelmingly laboratory-based, limiting their ecological and clinical validity. The
development of ecologically valid tasks to tap the real-world relevance of subjective timing
impairments in dementia represents the critical next step to quantify such disturbances
and, ultimately, support the individual in their everyday activities of living.

8. Conclusions

Subjective timing is a multifaceted and inherently complex cognitive capacity, vulner-
able to disruption across dementia syndromes. This vulnerability is evident not only in
terms of the perception of short intervals, but also the capacity to mentally traverse longer
stretches of time across past and future temporal contexts. Here, we have explored how
neurodegeneration influences the cognitive profile of time perception and mental time
travel, using AD and FTD as representative conditions to explicate the mechanisms and
consequences of impairment. We hope that this narrative review will serve simultaneously
as an overview of basic science questions around neurodegeneration-related changes to
these vital human timing capacities, as well as a tool for scientists and clinicians seeking
insight into the subjective time disruptions displayed by their patients. While we have
seen that subjective time disturbances are common in dementia, further research is needed
before the potential transdiagnostic implications of these disturbances can be thrown into
sharp relief. To illustrate the functional consequences of disruptions to subjective timing,



Brain Sci. 2021, 11, 1502 17 of 25

we focused here on two illustrative adaptive capacities: intertemporal decision-making
and prospective memory. In both cases, declines to either time perception or mental time
travel have profound consequences for future-directed behaviours. Future work charting
the interplay between time perception and mental time travel in these domains stands to
greatly deepen our knowledge of the cognitive mechanisms underlying prospective func-
tions in everyday life. At the same time, targeted efforts to uncover such neurocognitive
mechanisms may also prove fruitful in helping families, caregivers, and individuals with
dementia to navigate disruptions to their fundamental capacities for subjective timing.
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